3.3.19 \(\int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [219]

3.3.19.1 Optimal result
3.3.19.2 Mathematica [A] (verified)
3.3.19.3 Rubi [A] (verified)
3.3.19.4 Maple [B] (verified)
3.3.19.5 Fricas [B] (verification not implemented)
3.3.19.6 Sympy [F]
3.3.19.7 Maxima [F(-2)]
3.3.19.8 Giac [F(-2)]
3.3.19.9 Mupad [F(-1)]

3.3.19.1 Optimal result

Integrand size = 28, antiderivative size = 181 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {2 (-1)^{3/4} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {3 i \sqrt {\tan (c+d x)}}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

output
2*(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)) 
^(1/2))/a^(3/2)/d+(1/4+1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I* 
a*tan(d*x+c))^(1/2))/a^(3/2)/d+3/2*I*tan(d*x+c)^(1/2)/a/d/(a+I*a*tan(d*x+c 
))^(1/2)-1/3*tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*x+c))^(3/2)
 
3.3.19.2 Mathematica [A] (verified)

Time = 1.99 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.87 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\left (\frac {1}{4}+\frac {i}{4}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\sqrt {a+i a \tan (c+d x)} \left (12 \sqrt [4]{-1} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) (1+i \tan (c+d x))^{3/2}+\sqrt {\tan (c+d x)} (-9 i+11 \tan (c+d x))\right )}{6 a^2 d (-i+\tan (c+d x))^2} \]

input
Integrate[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
((1/4 + I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan 
[c + d*x]]])/(a^(3/2)*d) + (Sqrt[a + I*a*Tan[c + d*x]]*(12*(-1)^(1/4)*ArcS 
inh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*(1 + I*Tan[c + d*x])^(3/2) + Sqrt[Tan[c 
 + d*x]]*(-9*I + 11*Tan[c + d*x])))/(6*a^2*d*(-I + Tan[c + d*x])^2)
 
3.3.19.3 Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 4041, 27, 3042, 4078, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^{5/2}}{(a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4041

\(\displaystyle -\frac {\int -\frac {3 \sqrt {\tan (c+d x)} (a-2 i a \tan (c+d x))}{2 \sqrt {i \tan (c+d x) a+a}}dx}{3 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\tan (c+d x)} (a-2 i a \tan (c+d x))}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\tan (c+d x)} (a-2 i a \tan (c+d x))}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4078

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (4 \tan (c+d x) a^2+3 i a^2\right )}{2 \sqrt {\tan (c+d x)}}dx}{a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (4 \tan (c+d x) a^2+3 i a^2\right )}{\sqrt {\tan (c+d x)}}dx}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (4 \tan (c+d x) a^2+3 i a^2\right )}{\sqrt {\tan (c+d x)}}dx}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4084

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-i a^2 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^4 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {4 i a \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4082

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {4 i a^3 \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}-\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 65

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\frac {8 i a^3 \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {3 i a \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {-\frac {8 (-1)^{3/4} a^{5/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a^2}}{2 a^2}-\frac {\tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\)

input
Int[Tan[c + d*x]^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
-1/3*Tan[c + d*x]^(3/2)/(d*(a + I*a*Tan[c + d*x])^(3/2)) + (-1/2*((-8*(-1) 
^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a 
*Tan[c + d*x]]])/d - ((1 + I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c 
+ d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d)/a^2 + ((3*I)*a*Sqrt[Tan[c + d*x]] 
)/(d*Sqrt[a + I*a*Tan[c + d*x]]))/(2*a^2)
 

3.3.19.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4041
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m* 
((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m)   Int[(a + 
b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n 
 - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (In 
tegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4078
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f*m)), 
 x] + Simp[1/(2*a^2*m)   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f* 
x])^(n - 1)*Simp[A*(a*c*m + b*d*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a 
*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
&& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 
3.3.19.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 766 vs. \(2 (140 ) = 280\).

Time = 0.97 (sec) , antiderivative size = 767, normalized size of antiderivative = 4.24

method result size
derivativedivides \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (9 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-44 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+24 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-3 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +9 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )-72 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+80 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+72 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-24 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+36 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {i a}\, \sqrt {-i a}}\) \(767\)
default \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (9 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-44 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+24 i \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-3 i \sqrt {2}\, \sqrt {i a}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +9 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \tan \left (d x +c \right )-72 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\, \tan \left (d x +c \right )+80 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+72 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-24 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}+36 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {i a}\, \sqrt {-i a}}\) \(767\)

input
int(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/24/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^2*(9*I*(I*a)^(1/2)*2^ 
(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a 
+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-3*2^(1/2)*(I*a)^(1/2)*ln(( 
2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d 
*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-44*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d 
*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2+24*I*(-I*a)^(1/2)*ln(1/2*(2*I*a 
*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^( 
1/2))*a*tan(d*x+c)^3-3*I*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a 
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+ 
9*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)-72*I*(-I*a)^ 
(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I* 
a)^(1/2)+a)/(I*a)^(1/2))*a*tan(d*x+c)+80*I*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan 
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+72*(-I*a)^(1/2)*ln(1/2*(2*I*a*t 
an(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/ 
2))*a*tan(d*x+c)^2-24*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d* 
x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)+36*(-I*a)^(1/2)*(I 
*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d* 
x+c)))^(1/2)/(-tan(d*x+c)+I)^3/(I*a)^(1/2)/(-I*a)^(1/2)
 
3.3.19.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 613 vs. \(2 (131) = 262\).

Time = 0.30 (sec) , antiderivative size = 613, normalized size of antiderivative = 3.39 \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {1}{2} i \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-\frac {1}{2} i \, a^{2} d \sqrt {\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + 3 \, a^{2} d \sqrt {\frac {4 i}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {52 \, {\left (4 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} - {\left (3 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{2} d\right )} \sqrt {\frac {4 i}{a^{3} d^{2}}}\right )}}{605 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) - 3 \, a^{2} d \sqrt {\frac {4 i}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {52 \, {\left (4 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (3 i \, d x + 3 i \, c\right )} + e^{\left (i \, d x + i \, c\right )}\right )} - {\left (-3 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{2} d\right )} \sqrt {\frac {4 i}{a^{3} d^{2}}}\right )}}{605 \, {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (10 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 9 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

input
integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
-1/12*(3*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(1/2*I*a^2*d*s 
qrt(1/2*I/(a^3*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2* 
I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e 
^(2*I*d*x + 2*I*c) + 1)) - 3*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I* 
c)*log(-1/2*I*a^2*d*sqrt(1/2*I/(a^3*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sq 
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) + 3*a^2*d*sqrt(4*I/(a^3*d^2) 
)*e^(3*I*d*x + 3*I*c)*log(52/605*(4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 
1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3*I*d 
*x + 3*I*c) + e^(I*d*x + I*c)) - (3*I*a^2*d*e^(2*I*d*x + 2*I*c) - I*a^2*d) 
*sqrt(4*I/(a^3*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)) - 3*a^2*d*sqrt(4*I/(a^3*d 
^2))*e^(3*I*d*x + 3*I*c)*log(52/605*(4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) 
 + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3* 
I*d*x + 3*I*c) + e^(I*d*x + I*c)) - (-3*I*a^2*d*e^(2*I*d*x + 2*I*c) + I*a^ 
2*d)*sqrt(4*I/(a^3*d^2)))/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(2)*sqrt(a/(e^( 
2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I 
*c) + 1))*(10*I*e^(4*I*d*x + 4*I*c) + 9*I*e^(2*I*d*x + 2*I*c) - I))*e^(-3* 
I*d*x - 3*I*c)/(a^2*d)
 
3.3.19.6 Sympy [F]

\[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{\frac {5}{2}}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tan(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)
 
output
Integral(tan(c + d*x)**(5/2)/(I*a*(tan(c + d*x) - I))**(3/2), x)
 
3.3.19.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.3.19.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(tan(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[-98]Warning, replacing -98 by 69, a substitut 
ion varia
 
3.3.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

input
int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2),x)
 
output
int(tan(c + d*x)^(5/2)/(a + a*tan(c + d*x)*1i)^(3/2), x)